Local polynomial regression with correlated errors in random design and unknown correlation structure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design for regression models with correlated errors

The present article is a draft of a chapter in the Handbook of Design and Analysis of Experiments and provides a survey of results on experimental design for linear regression models with correlated responses.

متن کامل

A Plug-in Bandwidth Selector for Local Polynomial Regression Estimator with Correlated Errors

Consider the Þxed regression model where the error random variables are coming from a strictly stationary, non-white noise stochastic process. In a situation like this, automated bandwidth selection methods for nonparametric regression break down. We present a plug-in method for choosing the smoothing parameter for local least squares estimators of the regression function. The method takes the ...

متن کامل

Local polynomial regression on unknown manifolds

We reveal the phenomenon that ”naive” multivariate local polynomial regression can adapt to local smooth lower dimensional structure in the sense that it achieves the optimal convergence rate for nonparametric estimation of regression functions belonging to a Sobolev space when the predictor variables live on or close to a lower dimensional manifold.

متن کامل

Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors

Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...

متن کامل

Wavelet Shrinkage for Regression Models with Random Design and Correlated Errors

This paper presents some results on semi-parametric regression using wavelet methods in the presence of autocorrelated stationary Gaussian errors, and when the explanatory variable follows a uniform distribution or comes from a stochastic sampling like the jittered sampling scheme. The aim is to estimate the signal globally with low risk. It is shown that in these special cases the samples can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2018

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asy025